

Testing is an integral part of any software development process. After an initial test run during devel-
opment there is usually a repeated test procedure in place. Ideally, it is fully automated and runs on
a regular schedule. However, the scope of these tests rarely covers 100% of all functionality. There
are always some parts that are not tested. What are those parts? When should you stop testing? How
do you identify the components, where testing might not be worth the cost?

No Change

The main origin of software defects are unin-
tended side effects of routine code changes.
However, what about code that is not changing?
The claim that all software and all its components
are always evolving is just false. In our testup.io
stack we have a number of services that run al-
most unchanged for years. One such service col-
lects usage statistics using SQL and another trans-
lates security tokens from one system to another.
No test plan has ever been created for them. They
just continue to work.

Of course it is sometimes hard to predict whether
a component will evolve or not. Adding tests later
can be much more difficult than doing it straight
away, but it might waste resources if that test is
never needed. Pretending that no change is ex-
pected can be an easy excuse for avoiding the

immediate extra work. That is why this argument
might be misused by many. Just because others
make such a mistake doesn’t mean that you can’t
do it right. If no change is expected don’t plan
regular tests.

External Dependencies

Some of our services are actually thin wrappers
around external systems. Examples are providers
that check kubernetes for the state of simulated
devices, check cloud APIs for the state of virtual
machines and additional cloud resources that are
needed to run a specific device configuration. The
major task of such components is to translate an
external state into a unified internal one. Their ac-
tual logic is fairly thin.

When Not to Test © 2023 by testup.io 2

Please visit us:
www.testup.io

Or contact us at:
info@testup.io

Because this external system is not easily available
when running tests there are three common strat-
egies to test in such a scenario.

• Mock the external system

• Create a test environment of the external
system

• Test in production

None of these strategies leads to 100% coverage.
The mock is a look-alike for the external system.
It is supposed to behave like the real system
within the tested scope. However, they do not
discover problems originating from 3rd party re-
gressions or deviations from their original specifi-
cation. Test environments can be expensive to set
up. Their configuration is difficult to match the
production version within all relevant parameters.
Testing in production is certainly an option, but
always comes with the risk of breaking real assets
and therefore can only have limited scope.

The complexity of tests in these discussed scenar-
ios might quickly generate costs that outgrow
their benefits. Of course, this is not good news.
The lack of testability creates bigger problems
that need to be mitigated elsewhere. In our case
we had to build complex monitoring strategies,
that permanently check the system’s integrity.
Since the affected components are just known to
produce more production issues than others, we
can only compensate by speeding up our re-
sponse times. To summarize, if testing is too ex-
pensive then invest in monitoring instead. If errors
can’t be avoided speed up your recovery times.

Heavy change

Many components are under heavy development.
Their interfaces, their actual use case and their ar-
chitecture may change constantly. Writing tests
for each version of an evolving software can just
slow down the process without benefit. A test
would be outdated even before it becomes use-
ful. Usually, this is a temporary state. It doesn’t
mean that tests are not important. Testing just
happens elsewhere. A feature may be tested in
practice by real users. Sometimes AB tests roll out
a feature just to get feedback on user acceptance.
The chance of the added feature being dropped
can be substantial.

In pursuit of rapid user feedback and real world
results we might want to delay the installation of
planned tests for a brief amount of time. The dan-
ger, of course, is that tests are forgotten eventu-
ally. This strategy creates what is known as tech-
nical debt in software development. If tests are
missing you may live under the assumption that
the feature is complete, when in fact later prob-
lems just become more costly to fix. Just like real
debt interest is accruing. Hold business account-
able. If tests are dropped for speed the resulting
costs need to be transparently communicated.

Low value

let’s face it, sometimes we just don’t care. Ask
yourself, is it you who doesn’t care, or is it your
company. If the answer is the former you may
want to change your attitude. In case of the latter
you may want to kill the feature and start appre-
ciating the value of simplicity. Some of your users
may have already started depending on a low
value feature, not because it’s of great use, but
because it is there. Its failure may cause issues in
a larger process where the original feature might
have only played an subordinate role. Hence, if
testing creates more costs than a feature adds
value consider dropping that feature early rather
than late.

Summary

Regression testing means risk mitigation. It never
adds immediate value. Every new feature most
likely passed some sort of initial test run or an ac-
ceptance test. These features would just be rolled
out at the normal pace. However, in the absence
of testing this would lead to frequent und unex-
pected failure of old features. This delayed re-
ward makes testing prone to procrastination.
There are many excuses to postpone or com-
pletely skip the test development. As with every
excuse they each have a core of truth in them.
Very often it is just the better option not to test
something periodically. Listing the valid reasons
may help to distinguish the excuse from the real
argument.

